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Introduction :..'-' ,      ■^.     - |    ,r;' 

The generalized additive channel was introduced in [1]. It is described 

by an additive noise process with sample functions inducing a measure on a 

linear topological vector space, and by a constraint which includes 

dimensionality. The coding capacity of the matched channel was analyzed in 

[1], with an exact value obtained for the Gaussian channel and an upper bound 

for a class of nonGaussian channels. Bounds on the coding capacity for the 

mismatched Gaussian generalized channel were obtained in [2]. 

In this paper, the exact coding capacity of the mismatched Gaussian 

generalized channel is determined, along with an upper bound for a class of 

nonGaussian mismatched channels. The set of admissible constraints is also 

greatly increased over that considered in [2]. Although the treatment here is 

restricted to noise measures induced on a separable Hilbert space, it can 

readily be seen that the results extend immediately to the class of linear 

topological vector spaces considered in [1]. The results of the present paper 

are partly based on the Hilbert space results on information capacity given in 

[3]: for the extension to linear topological vector spaces, one would use the 

corresponding results given in [4]. The focus on Hilbert space is useful for 

application of the results given here to the discrete-time or continuous-time 

additive channel. 
■' ,. ■ ■   m        i!. ■ ■ ■   '■ 

The basic path followed here is well-known to information theorists, 

appearing in the analysis of much simpler channels. A generalization of 

Feinstein's Fundamental Lemma is used to obtain a lower bound on capacity, and 

Fano's inequality is used to obtain an upper bound. However, the generality of 

the model requires a development considerably different from that of the 

classical treatment; central to these results is the spectral representation 

of unbounded self-adjoint operators. 
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determining bounds on coding capacity of the continuous-time channel. These 

bounds will be given elsewhere. 

^GN ^^ defined as the zero-mean Gaussian cylinder set measure on H having 

the same covariance operator as n^.  The entropy Hgj^(N) of ji^ with respect to 

'^GN ^^ defined as follows. Let H^ be any finite-dimensional subspace of H, 

with u^  and p.^^  the measures induced on H by the projection operator     

H 
H 

n 
H^. Let Hgj^{N|H^) be the entropy of p^  with respect to p^-. 

^GN^^'\) = «> if it is false that p^ « p^.  while otherwise 

Hr-N(N|H ) = X n' 'H 
n 

log 
du 
n 
'GN 
n 

K-   °^fi^^ "GN^^^ ^y "GN^") =  ^"P    "cN^^l^n) 
H C H.n>l 
n 

The induced measures p^^  and p^  are always countably additive for any finite- 

dimensional subspace H^. while the measure p^  will be countably additive if 

and only if IL, is trace-class. 

Since R^ exists and range(R2^) C range(Rg). R^ =  R|(I+S)R| for a self- 

adjoint linear operator S. with {I+S)~ existing and bounded [5]. 0 is the 

smallest limit point of the spectrum of S. A limit point of the spectrum is 

either the limit of a sequence of distinct eigenvalues, or an eigenvalue of 

infinite multiplicity, or a point of the continuous spectrum [6]. 

Coding Capacitv . 

Theorem 1: (1)  If IL, (N) < ", then "^ '        "'      '' 

VP) log 

GN* 

1 + 1+e 
(2) If Hgj^(N) < CO and dim{H) < ", then cJJ(P) = 0. 

(3) If p^  is Gaussian and dim(H) = <». then CL(P) i log 1 + 
i+e 

"!>:. 

Proof: The complete theorem will first be proved under the assumption that 

e < ». 
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Suppose that JJL^  is Gaussian, with 9 < «>. We will show that 

VP) > t log[l - j^ . 

Fix any 5 > 0. Since 1 + 9 is the smallest limit point of the spectrum of 

the self-adjoint operator I + S. there exists an infinite o.n. set {v  n > U 
•• n      ' 

in the range of the projection operator P^+^g. where {P , t € K} is the left- 

continuous resolution of the identity for I + S such that x € 2)(I+S) if and 

only if SQX  dllP^xll  < », and then (I+S)x = /QAdP^^x where the integral exists 

as a limit in the strong operator topology [6]. 

If x is any element in span{v^. n > 1}, then P^x = x for t > 1+94-6, since 

MM M 
then P 2 <x,v >v = 2 <x,v >P v. = 2 <x,v.>v.. Thus, if x is in 

''i=l   \ ^   i=l   ^  ^ ^   i=l   1  1 

span{v  ..,v }, then 

J-^t'd<P^x,x> = Sl^'  t2d<P^x.x> = Sl^^^  t^dllP^xll^ 

< (i+e^xf ;J"^^ diip^xii^ < (i+9+x)2|ixi|2. 

I 

This also shows that span{v^. n>l} is contained in 2)(I+S), and that 

ll(I+S)xll^ < (1+9+5)^11x11^ for all x in span{v^, n>l}. Similarly. 

ll(I+S)^xll^ < (1+9+6)11x11^ if X € span{v . n>l}.        I 
n  ~ •* 

Let U be the unitary operator in H which satisfies R^(I+S)^U^ = R^ [5]. 

For each v^, define u^ = Uv . so that (I+S)2u\ = (I+S)^v 

Choose Q in (9,P). For n > 1. define p^  to be the zero-mean Gaussian 

0   ^ ^   ^ measure with covariance operator j^^   2 R^U.®RHU.. Let 
i=l 

\ = span{R^u^ ^V " ^°^® ^^^ \ ^  range(Rj) , because R^u. = 

Rj(I+S)2uV. = R|(I+S)^V.: since il^lU^-] =  1. this shows that  . 

^j^[range(Rp] = 1. Let )i^ and u^^  be the joint cylinder set measures 
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It. 
\ 

defined by ji^ and \i^.   Since \i^  gives full measure to H , we can replace fx^ by 

the measure V^'^^  . where P^ is the projection operator with range equal to 

H . Thus the joint measure of interest is concentrated on H xH , and if B and 
^^ n n        1 

B^ are Borel sets in H^. then ^^l^^^"^^  = M5J%{(x.y): (x. x+P^y) € B^xB^}. 

Similarly, M^CB^] = M5®f^{{x,y): x+P^y € B^}. Since both ]I^  and ]^^\^  are 

countably additive measures on H^xH , the results of [3] can be applied. Set 

F^ = (x € rangeCRj): 11x11^ < nP}. 

It will now be shown that l^[F^] ^ 0 as n -» «>. Note that \\ = V-    o(R^)~\ 

where ^ ^ is the zero-meem Gaussian measure with covariance operator 

Q        n n 
l+e+6    ^ ^i®^i*   ^°  ^^^ X =    2 <x,u >u      a.e.   dji    (x).   Thus 

i=l i=l T^ 

^ n^^^n^ = f^ n^''-   "V^"""^ > ^^> = ^V'   "(I+S)Vxll^ > nP} 
XT T . 

-^ J* " 9 
= fx    {x:   II(I+S)2U    2 <u..x>u.ir > nP} 

T" i=l     ^ ^ 

< M A-K:   (l+ei-S)  2 <u..x>^ > nP}. 
T^ i=l     ^ 

The random variables {<Uj.'>, i<n} are i.i.d. Gaussian random variables with 

respect to ]x        mean zero and variance Q/[ 1+04-6]. Applying Chebyshev's 

inequality, one has fiJCF^] <  "^ ^ , so that fv[F^] -♦ 0 as n 
^ ^        [nP-nQ]^ ^ ^ 

From the proof of Prop. 2 of [7], 

-j^x.y) =12 {a^(x.y) - b^(x.y)) + t n log(l + j^) 

where {a^,...,a^,b^,...,b^} is a family of i.i.d. Gaussian random variables 

with respect to fi™., each having zero mean and variance 

Q/(l+e4-6) 
l+Q/(l+e4-6). 

Q 
1+6+6+Q Take TT > 0, and define 
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V 
/ 

a^ = t n logll 

n 

- rnr, 

A„ = {(x.y): log 
iU^ 

n -(x.y) > a }, 
iu!y»U^ 

so c ^22 
that A^ = {(x.y): ^ 2 (a^ - b^) < -mr}. Since the sequence of random 

i=l 
2   2 

variables (a^ - b^) are independent and have zero mean w.r.t. |j^. Chebyshev's 

i2 
inequality gives M^[A^] < -^ 4n 

n -T l+e+6+Q. 

[■ 
k e n 

LetR<tlog   |l +  i^ 

S e 

0. 

nR. 
and set k^ = [e ]. Then. 

By the Thomasian-Kadota gemeralization of 

Feinstein's Fundamental Lemma (see, e.g.. [1. p. 165]), there exists a code 
-a 

-a 
MX[F"N] tend to zero as n ^ «>. Considering k e ^.   choose T SO that 

Q R + -r < log 1 + 
-a 

Then k e 
n 

n 
0 also. i+e+s. 

This shows that any rate less than f log 1 + 
i+ei-sj is admissible, for 

is 

all Q < P and for all 5 > 0. Hence, the supremum over all admissible rates 

must be at least t log 1 + ^ . so that cJJ(P) > f logl'l + ^ when 

Gaussian. 

Now consider the case of a possibly nonGaussian ji^,   not necessarily 

countably additive, with 9 < «> and Hgj^(N) < ". Proceeding exactly as in the 

proof of this result for the matched channel [1. pp. 167-168]. it is found 

that any admissible R must satisfy R < limsup ^ C:5!(P) • C^(P) is the informa- 
n 

tion capacity of the additive Gaussian channel with noise covariance operator 

Rj^, subject to the constraints that support(fi^) has linear dimension < n and 

J"^llxll^d)ii^(x) < nP. 
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— ^(P) r     p 1 
lim  = 2  logll + j;^\.  To show It now remains only to verify that 
n   n 

this, one can apply Theorem 2 of [3]. If the operator S has no eigenvalues 

nP less than 9, then dJ(nP) = 2. log 

p 
exists and equals 2 log 1 + 

1 + 
n[l+e] 

1+e 

for all n > 1, so lim - C^(nP) 
n 

If the operator S has a finite set of eigenvalues less than 9, A < A < 

... < Aj^ < e, then ^^A^ + nP > KG for sufficiently large n. so that applying 

Theorem 2(c) of [3], 

K 
i C^(nP) = i- 2 log 

1=1 

1+e 
l+A. log 1 + 

nP + 2^^i(A.-e), 

n(l+e) 

and this again converges to the limit t log 1 + 
1+e 

Finally, suppose that S has an infinite sequence of eigenvalues {A ) 
n 

strictly less than 9. Since e is the smallest limit point of the spectrum, 

'      K 
A^t©- This means that for any fixed P, KP + 2 A. > KA^ for all sufficiently 

i=l ^    ^ 

large K. To see this, one notes that for any A > 0, there exists M such that 

e - A < A for i > M^. Thus, for K > M„. 0- XQ. 

K     "0 % 
KAj^ - 2 A. < 2 (Xj^-A.) + (K-MQ)A < 2 (e-A ) + (K-M )A, 

i=l    i=l i=l 

so that 

]_ 
K 

K 

4 "0 
2 (e-A ) + (K-M„)A 

4=1  ^     " 

with the right side converging to A as K -» <». Thus, choosing A < P, 

K 
KP + 2 Aj > KAj^ for K sufficiently large. One can thus apply part (c) of 

i=l 

Theorem 2 of [3], giving 
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n 
C^(nP) = t 2 log 
^       i=l 

1+0 
1+A. 

1 

*|log 1 + 
nP + f] ,(x.-e) 

1=1 *■ 1 -* 

n(l+G) 

Since log T-r » 0, - 2 log 
n 1+X 

n 1=1 n 

n 
Y^l -» 0. Similarly. ^ 2 (X,-0) -* 0. 

^ i=f ^ 

Thus, one again has lim - cJ(nP) = t log 1 + ^ ; part (1) is proved, and 
n I-      -I 

this also completes the proof of part (3). | 

If dim range(Rj^) = M < oo, then in the immediately preceding result one 

has for n sufficiently large.     ■:^._- ,  i 

C^(nP) = 
M 

t 2 log 
i=l 

M + nP + ^ 
M^i 

M(l+p.) 

where P^ < ^2 ^ ••• ^ Pjl are the eigenvalues of S. In this case, 

lim n *^^^^ ~ ^' '^^ ^^^ R > 0 is not permissible. 

The theorem is now proved when 9<a>. Ife = oo, then obviously 

cJJCP) > t log 1 + 
1+e = 0. Part (2) of the theorem can be ignored, since 

e = 00 cannot occur unless range(Rj^) is infinite-dimensional. Thus, it only 

remains to prove part (1). and this is equivalent to showing that 

1 
[1 

n 
^^"^ n ^^^^^  = ° *1^^" e = c>o. If there exists an integer M such that 
n 

1 n 
\^^   > P + - 2 A^ for all n > M, then 

i=l 

M 
lim i CJ(P) = lim 2^ 2 log 
n n    j=l 

rP-^l" M ^i=l''i X. + 1 1 

1 + X = 0. 

Suppose that there exists a subsequence (ru ) of the integers such that 

1  ^ 
for all k > 1. X    - — 2^X. < P. This gives 

k "' ^^  "k i=l ' 
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lim ^cJ(nP) = lim ^ ^ log 
^ n ff       k ^"k i=l 

■p - k- - k .^j] +  1 + X       . 

. 1  + X. 
1 

M 

M 
< lim 5-  2 log 

k ^'^k i=l 

P + 1 + X 
"k- 

+1 

1 + X. 
1   % + lim 5-   2 log 

k ^""k i=M+l 

P + 1 + X 
h, +1 
k 

1 + X. 
1 

1  ^ 
for any fixed integer M. Now. since — 2 

"k i=l 
X ^,-X.l < 
L n,+1  ij - P. and since 

1_ ^k 

\  i=l '^\ 

X 

i 1  ^ ^"^^ 
•^ 1 as k ^ ». we must have that :— 2 TT:  is bounded, so that 

\  i=l '^\ 

^■ 

+1 

then 

< CQ for some C^ < «> and all k > 1. The first term on RHSCT) above is 

M 

' "■" K '°^ 
■P + 1 + C, ■o\ 

1 + X, = 0. 

We now have, for any M > 1. 

lim '- C^(nP) < lim 2^ . f 
n k   Tc i=M+l 

log 

P + 1 + X 
\ +1 

1 + X. 
1 

< lim ^   2^ 
k ^^ i=M+l 

■p + X      ,  - 
n^-Hl \ 

[         '^\ 

< lim 5^   r 
k ^nc i=M+l 

X ^1 - X. 

1 + X M+1 2(1-^ Vl) 

^ 1 + X M+1 

Since M is arbitrary and X^ ^ «>, lim - C^{nP) = 0, and thus Cl!{P) =0 when 
n 

e = 00. 

V 
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Bounds on Coding Capacity of the Discrete-Time Gaussian Channel 

We now consider the following situation. A zero-mean Gaussian stochastic 

process {N^, t = 1,2,...} is represented by a bounded, non-negatiye, self- 

adjoint operator R^  in i^;   R^  is an infinite matrix with R (i.j) = EN.N.. The 

constraint is given in terms of a second such operator R in 2      The basic 

assumption to be made is that range(R^) contains range(R^). 

A simple example of such a channel and constraint is the memoryless 

Gaussian channel with ^^ =  I   (leading to an average power constraint) and R 

2 2 
given by Rj^(i.j) = Qc.5   with a    > e  for all j > 1. some e > 0. 

In the discrete-time channel, a code (k.n.e) is a set of k code words 

x^,..,Xj^ and corresponding decoding sets C^ C^^, satisfying the constraints 

given below, with the requirement that each x. belong to K^. The decoding sets 

are thus Borel sets in IR . The constraints on the code words are that 

2 2      --^  2 
i"w,n - ^^' ^^''''® ""^"w.n " "\!n^"n= "*"n ^^ ^^"^ n-dimensional Euclidean 

^^^  ^W,n ^^ ^^^ restriction of R^ to {1,2,..,n}x{l.2,..,n}. As before, 

we require that p^{y:   y+x. € C.} > 1 - e for i < k, where p^  is the measure on 

[B[IR'^] induced from p^  by the map q^: x -» (x^ .x^, . . ,x^) . R > 0 is an admissible 

n.R 
rate if there exists a sequence of codes (([e ^ ],n ,e    })  with e  -^ 0 as 

1 n. ■■ -^      n. 
1 1 

00 

n^ -^00. The capacity C^(P) is the supremum over the set of admissible rates. 

An exact expression for the coding capacity of the discrete-time Gaussian 

channel is given in [8]. In some applications, the value of the coding 

capacity will be difficult to determine, as it involves rather detailed 

knowledge of the spectrum of the operator S, defined above. In such cases it 

is useful to have bounds on coding capacity. For example, a lower bound 

enables one to strive toward communicating at a rate that is certain to be 

admissible. We give here upper and lower bounds on coding capacity. 

Ilx 

norm. 
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Theorem 2: Suppose that N is Gaussian. Let 0 be the smallest and 0 the 
^ K 

largest limit point of the spectrum of the operator S. Then      '' . 

•r 
\ 

log 1 + 
(1+ej^) 

< c^(P) < i log 1 + 
(i+ejj- 

If N is not Gaussian, and Hp„(N) < «>, then 

C^(P) < t log 1 + 
(1+0^) 

Proof: The upper bound can be obtained from part (1) of Theorem 1. That is, we 

r.n 
can identify K with H^, the subspace of i^  consisting of all elements x such 

that (x)^ = 0 for i > n. The constraint that any admissible code word belong 

to H^ thus imposes an additional constraint beyond those imposed in proving 

CO 

the theorem; this gives C^(P) < 2 log 1 + 
(1+0^ 

To prove the lower bound, we can of course assume that 0^ < <». ^g then 
K 

simply mimic the proof of part (3) of Theorem 1. but now defining p^  to be the 

Gaussian measure with zero mean and covariance matrix 

ig^X 

M 
n 

^        1  RIU'^^RIU'? X " l+a,+6 .^/^N"i'°"'N"i K  i=l 

n 
where the {u'^', i<M^} are determined as follows, {v., i < M } are o.n. elements 

in IR such that "(Ij^+S^)^v^ll^ < 1 + 0^^ + 5; such elements always exist [8]. 

{u , i<M } are then defined by u. = U v., where U is the unitary operator in 

r,n K" satisfying R^  = Rf  (i +s )2\J 
•^  * N.n   W.n*- n n-* n 

1   n 1 

D 
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